Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents a dual-inductor hybrid (DIH) converter that is capable of efficient non-isolated DC-DC con- versions with extremely large voltage conversion ratios. The converter topology combines a switched-capacitor network and two interleaved inductors, that supports simple duty-cycle control for output regulation. In order to achieve complete soft charging for all flying capacitors, a method to optimally size the capacitors has been proposed and verified. A detailed analysis on the two inductor currents revealing a new and simple method to modulate them and its impacts on output regulation and efficiency are also provided and demonstrated in experiments. Employing the converter topology and design methods, a DIH converter prototype is implemented and measured for a wide range of operating voltages, providing a 1V-2V output from a 48-V input and a 1V-5V output from a 150V input with output currents up to 20A. The converter achieves 94.3% peak efficiency at 48V- to-2V/7A conversion and 93.7% at 150V-to-5V/18A conversion.more » « less
-
This paper describes the topology, fundamental operations, and key characteristics of a Dual-Phase Multi-Inductor Hybrid (DP-MIH) Converter for Point of Load (POL) telecommunication and data center applications. The circuit topology employs a unique configuration of switched-inductor and capacitor pairs to achieve complete soft charging and native voltage balancing of flying capacitors regardless of mismatches and variations in capacitor and inductor values. The converter topology and its operation are verified by a five-level DP-MIH converter prototype capable of delivering maximum load of 100A at 1V-5V regulated output voltages from a 48V input supply. It achieves 90.9% peak efficiency and 440 w/in3 power density for 48V-to-1V conversion and 95.3% and 2200W/in3 for a 48V-to-5V conversion.more » « less
An official website of the United States government

Full Text Available